NAR’s Breakthrough Articles present high-impact studies answering long-standing questions in the field of nucleic acids research and/or opening up new areas and mechanistic hypotheses for investigation. These articles are chosen by the Editors on the recommendation of Editorial Board Members and Referees. Articles are accompanied by a brief synopsis explaining the findings of the paper and where they fit in the broader context of nucleic acids research. They represent the very best papers published at NAR.
The Fanconi Anemia (FA) pathway is the subject of intense interest owing to the role of FA as a tumor suppressor. Three FA complex proteins, FANCM, MHF1, and MHF2, were identified as factors that suppress crossover during meiosis in the model plant Arabidopsis thaliana. Here, the authors extended these findings and identified a novel anti-crossover factor and showed that it encodes the plant FANCC homolog, which was previously thought to be vertebrate-specific. They further showed that FANCC regulates meiotic crossover together with two other FA proteins, FANCE and FANCF. This suggests that the FANCC-E-F subcomplex was already regulating DNA repair in the common ancestor of all living eukaryotes.
Error-free translation is one of the most vital processes in all living organisms, but can be substantially challenged by compounds that mimic amino acids. Canavanine, or 5-oxa-arginine, is used as an antimetabolite by higher plants that is toxic due to its incorporation into proteins. We report the discovery of a standalone editing protein specifically deacylating canavanylated tRNAArg that enables the legume rhizosphere inhabitant Pseudomonas canavaninivorans to prevent canavanine mis-incorporation into its proteome. Our results are the first to show editing activity towards mischarged tRNAArg and add to the puzzle of how faithful translation is ensured in nature.
The multi-subunit Elongator complex mediates the addition of a carboxymethyl group to wobble uridines in eukaryotic tRNAs. This tRNA modification is crucial to preserve the integrity of cellular proteomes and to protects us against severe neurodegenerative diseases. Elongator is organized in two distinct modules (i) the larger Elp123 subcomplex that binds and modifies the suitable tRNA substrate and (ii) the smaller Elp456 subcomplex that assists the release of the modified tRNA. The presented cryo-EM structures of Elongator show that the assemblies are very dynamic and undergo conformational rearrangements at consecutive steps of the process. Last but not least, the study provides a detailed reaction scheme and shows that the architecture of Elongator is highly conserved from yeast to mammals.